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The stability of elastico-viscous flow between 
rotating cylinders. Part 1 
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University College of Wales, Aberystwyth 

(Received 8 March 1963) 

Consideration is given to the flow of an idealized elastico-viscous liquid con- 
tained in the narrow channel between two concentric cylinders, the motion 
being due to the relative rotation of the cylinders. It is shown that the presence 
of elasticity in the liquid lowers the value of the critical Taylor number a t  which 
instability occurs. The secondary motion arising at the onset of instability has 
the usual cellular pattern, the cell length being decreased by the presence of 
elasticity in the liquid. 

1. Introduction 
Consideration has recently been given (Thomas &, Walters 1 9 6 3 ~ )  to the 

stability of flow of an elastico-viscous liquid in a narrow curved channel, in the 
case when the motion is due to a pressure gradient acting round the channel. 
The particular elastico-viscous liquid considered in that investigation was the 
liquid designated liquid B' by Walters (1963), with equations of state 

Pik = - p g i k  f l ) ; k , t  (1) 

axi axk 

ax m ax+ Y(t-t')? ---e(l)mr(x',t')dt', 

where pik is the stress tensor, p an arbitrary isotropic pressure, gik the metric 
tensor of a fixed co-ordinate system xi, e;;) the rate-of-strain tensor, and 

In these equations, N ( T )  is the relaxation spectrum (Walters 1960) and 

3 9  = X ' i ( X ,  t ,  t') 

is the position at time t' of the element that is instantaneously at the point xi a t  

t Covariant s f i x e s  are written below, contravariant suffixes above, and the usual 
summation convention for repeated suffixes is assumed. 
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time t .  The liquid designated liquid B by Oldroyd (1950) is a special case of 
liquid B' obtained by writing 

where qo is the limiting viscosity at small rates of shear and A, and A, are the 
relaxation time and retardation time, respectively. The Newtonian liquid of 
constant viscosity qo is also a special case given by 

"7) = 708(7). ( 5 )  

Thomas & Walters (1963a)  showed that, when the sides of the channel are 
stationary and the motion is due to a pressure gradient acting along the channel, 
the main effect of elasticity of type B' is to decrease the value of the critical 
Reynolds number at which instability occurs. A more interesting problem from a 
practical standpoint is that in which the motion is due to the movement of the 
channel boundaries only; in particular, the motion between coaxial cylinders 
in relative rotation. Up to the present time, no work appears to have been done 
on the stability of elastico-viscous flow between rotating cylinders,$ although 
the associated viscous-flow problem has been considered by a number of authors 
(see, for example, Taylor 1923; Chandrasekhar 1954). 

In the present paper, we shall consider the stability of flow when liquid B' is 
contained between coaxial cylinders in relative rotation. The method of solution 
is an extension of that used already by Chandrasekhar ( 1  954). In  order to use this 
method, it is found necessary to restrict the discussion to liquids with short 
memories-a description that can be applied to many real elastico-viscous liquids. 

2. Steady-state solution 
Cylindrical polar co-ordinates (r, 0, z )  are chosen with the axis of the cylinders 

along the z-axis (which is drawn vertically upwards), and with the inner and 
outer cylinders having radii rl and r,, respectively. It is supposed that the 
inner and outer cylinders rotate with angular velocities Q, and Q9, respectively. 

We consider the two-dimensional flow with velocity components5 

z)(~) = 0, v(e) = V(r ) ,  ~ b )  = 0. (6) 
It can easily be shown (cf. Walters 1963; Thomas & Walters 1963a) that the 
corresponding stress distribution in the case of liquid B' is 

f 6 denotes a Dirac delta-function, defined in such a way that 
m m 

S(s) = 0 (a: =k 0); [ S(x) dx = [ S(a:)dz = 1. 
J - w  J o  

1 Graebel (1963) has considered the problem for a Bingham plastic solid. In  this par- 
ticular type of non-Newtonian flow, the presence of a yield value makes the laminar 
flow more stable. 

9 Brackets placed round suffixes will be used throughout to denote physicaE compon- 
ents of tensors. 
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where vo ( = IOmN(r) d r )  is the limiting viscosity at small rates of shear and 

KO = /om TN(T) dr. 

If this distribution is now substituted into the stress equations of motion and 
the relevant boundary conditions are taken into account, we obtain the following 
expression for V ,  V = Cr + D/r,  (8) 

where (9) 

The steady-state velocity distribution for liquid B’ is in fact identical with that 
for a Newtonian liquid of constant viscosity r0. 

3. The disturbance equations 
We now consider the behaviour of the liquid when the steady state is disturbed 

slightly, confining the discussion to the case of neutral stability (of. Taylor 
1923; Chandrasekhar 1954). We assume a velocity distribution of the form 

where V is given by (8) and u, v, w are small quantities which are functions of 
r and z. In the following, we shall work to first order in u, v and w. The corres- 
ponding displacement functions (r’, O’, z ’ )  are (Thomas & Walters 1963a)f 

= u, V(@) = V + v ,  VtZ) = w,  ( 10) 

r’ = r - ( t - t ’ )u ,  

2’ = z-( t - t ’ )w.  J 
In order to determine the contravariant rate-of-strain components e(l)mr(r’, z‘, t’) 
that appear in the equations of state ( 2 ) ,  we write down the rate-of-strain com- 
ponents for the element at ( r ,  8, z )  at time t ,  replace r ,  8, z, t in these components 
by r’, O’, z’, t’, and use (11). In  this way, we obtain 

t The damping term exp [ - ( t -  t ’ ) /7]  in the equations of state ((2) and (3)) ensures that 
the effective range of ( t  - t’)  is (0, 6) where 6 is some multiple of the highest relaxation time. 

3-2 
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Equations ( 2 ) ,  (ll), ( 1 2 )  can now be used to determine the physical components 
of the partial stress tensor. After some reduction, we arrive at (cf. Thomas 
& Walters 1963 a)  

where So = r 2 N ( r )  dr .  

to the disturbance, we obtain 

L- 
Substituting for V from (8) and writing pTik) for the additional stresses due 
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where (PX is the additional pressure due to the disturbance, C and D are given by 
(9), and p is the density of the fluid. The equation of continuity is 

i a  aw 
r ar ax - -(ru)+- = 0. 

Substituting from (14) into (15) and using (16), we have 

1 a Z u  1 au agu 
-2p c+- v=-- +?lo -+----+- [ z] apx irr [ ar2 r ar r2 a22 

To facilitate the analysis, we now make the usual assumption that the annular 
gap between the cylinders is small compared with the radii of the cylinders (cf. 
Taylor 1923; Chandrasekhar 1954). Substituting r = r,+dx, where d = rz -r l ,  
and a = (Q,/Q,) - 1 in equation (9) and assuming that d / r  is small, we have 

(20) 

(21) 
D 
r2 

Also c+- + Q,[l +m]. 

Under these conditions, equations ( 16)-( 19) reduce to 

( 2 2 )  

( 2 5 )  

Making the usual assumption that the disturbance velocities are spatially periodic 
in the z-direction, it is possible to express equations (23)-(25) in non-dimensional 
form by using the following substitutions? 

u = sRr, Q,x(x) sin Ax, 
v = er, Q,v,(x) sin Ax 
w = Rr, Ql(dx/dx) cos Az, 
px = (~or,!21eR/d)p,(x)sinAz, R = d 2 Q l p / ~ , ,  e = Ad, 
T = - 2ur,R2/d, k = K,/pd2, s = ~ , S , / p ~ d ~ .  

’, (26) 

i 
t For Oldroyd’s liquid B, equation (4), k = T,, (h,-h,)/(pd2),  s = ~ / ~ h , ( h , - h , ) / ( p ~ d ~ ) ;  

and k = s = 0 for the Newtonian liquid. 
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The parameter T is commonly referred to as the Taylor number. Substitution of 
(26) into (23)-(25) gives 

- 2[ 1 + 01x1 v1 = - (dp,/dx) + Vf x - 4ka(dvl/dx) + S a s T ( d ~ / d ~ ) ,  (27) 

V;V, = +T[kV2,x-x], (28) 

where V: = (d2/dx2) - €2. The equation of continuity is satisfied identically. 
Eliminating p1 between (27) and (29) and writing v1 = v0/2e2, we obtain 

V2,vO = - [ X  - kV2, XI. (31) 

When N ( r )  = q08(7), i.e. when k = s = 0, these equations reduce to those 
obtained by Chandrasekhar (1954) for the viscous case. Equations (30) and 
(31) determine a characteristic-value problem for the Taylor number T as a 
function of the wave number F ,  and the lowest value of T for varying B gives the 
critical conditions at which instability first sets in. 

4. The solution of the disturbance equations 
To facilitate the analysis, we restrict the discussion in the present paper to 

liquids with short memories, i.e. liquids with short relaxation times (cf. Walters 
1962; Thomas & Walters 19633). It is then possible to neglect terms involving IOW rnN(r) dr ,  (n  2 ) ,  in comparison with those involving rN(7)  d r  and so” 
I O m N ( ~ ) & .  In  the present paper, this approximation implies the neglect of 

terms involving s and terms of order k2.  Such an approximation would be justi- 
fied, for example, in the case of the dilute polymer solutions investigated by 
Oldroyd, Strawbridge & Toms (1951). The simplified disturbance equations 
become 

(32) 

(33) 

[l +ax]vo  = v:x+ 2ka(dvo/dx), 

V2,vO = - T@[x - kV2, X I .  
Having modified the equations in this way, it is now possible to proceed, 

following the treatment given by Chandrasekhar (1954) in his discussion of 
the associated problem in viscous flow theory. We assume first a sine series 
expansion for vo, which automatically satisfies the boundary conditions vo = 0 
on x = 0 and x = 1. This expansion is then substituted into (32) and the expansion 
for x deduced. Finally, these expressions are substituted into (33) and an infinite 
determinant is shown to vanish; this determinantal equation can be used to 
determine the minimum T for varying 8. 

Following Chandrasekhar (1954) we write 
W 

vo = I; A,sinnpx. 
p=l  

(34) 
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Substituting into equation (32), we obtain 
m 

V$ x = 2 A, [{ 1 + ax} sin npx - 2nkap cos npx]. (35) 
p = l  

The solution of this equation, which satisfies the boundary conditions 

is 
~ = d x / d x =  0 on x =  0 and x =  1, 

m 

{GI,) cosh ex + Dip),sinh ex + C&*) x cosh ex + Dip) x sinh EX 
= z1 n2p2+e2 

+ (1 + ax)  sin npx + 2npa [ 2  - k(p2n2 + e2)] cos npx/(p2n2 + ez)}, 

where Gip) = - 2npa[2 - k(p2n2 + e2)]/(p2n2 + e2), 

D$”) = (np/A)[e+pfl(sinhe+ecoshE)- y,sinhe], 
Cbp) = - (np/A)  [sinh2 e + e(sinh e + e cosh e) pp  - e sinh e~,] ,  
Dip) = (np /A)  [(cosh e sinh e - e)  + e2 sinh epp - (e  cosh e - sinh e) ? / P I ,  

A = sinh2 e - e2, 

p, = 2a[2 - k(p2n2 + e2)] {( - l )p+ l+  Gosh e}/(p2n2 + @ ) ,  

7, = ( - l )p+l(  1 + a )  + 2 4 2  - k(p2n2 + e2)] e sinh el(p2n-2 + e2) .  

Substituting for v,, and x from (34) and (36) into (33) we have 

A, 
m 

2 A, [p2n2 + e2] sin npx = Te2 2 {@‘) cosh ex + D i p )  sinh ex 
,=l p = l  (p2n2+ e2)2 

+ C!f )x  cosh E X  + D!jP) x sinh ex + P p )  [ 1 + ax] sin npx + E@) cos npx}, (44) . 
where G i P )  = c ( P )  1 - 2&D(P) 2 ,  1451 

(46) 

(47) 

(48) 

Multiplying equation (44) by sinnqx and integrating from x = 0 to x = 1, we 
obtain 

p - 1  ( L ( [ l + (  q2n2+e2 -1)*+1coshe]@‘)+[( -1)q+1sinhe]@’) 

OiP) = 13123) - 2keC(P) 2 ,  

F ( P )  = 1 + k( n2p2 + E 2 ) ,  

B P )  = 4npa / (pW + € 2 ) .  

2( - 1)qe sinh E 

q2n2 + €2 

2 ~ .  [ 1 + ( - l)*+l C O S ~  E] + [ ( - l)*+l sinh e - q27T2 + €2 

(49) 
6 + X,, - &(n2p2 + e2)3 8) A, = 0, 

where A, = Ap/(n2p2 + e 2 ) 2  and 

x Pq = (&+$a)p(,), when p = q, \ 
X,, = 0, when p =l q and p + q  iseven, 

+ when p + q  and p + q  isodd. x =--- 4pqaF@) 2qiW 
pq n 2 (  q2 - p2)2 n( 42 - 132) ’ 
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Equations (49) represents a system of linear homogeneous equations for the 
Ap’s. The condition that not all the Ap7s  vanish is that the determinant of the 
system should vanish, i.e. 

2( - 1)Qesinhe + [( - l)*+lcoshe+ 
q2n2 + € 2  

(51) 

Equation (51) is an equation in the two variables T and 8. The critical Taylor 
number T, a t  which the laminar flow pattern breaks down is determined by 
calculating the minimum T for varying E .  The value of c corresponding to T, 
will be denoted by E,. 

1000 t 
I I I 
2 4 6 

e 
FIGURE 1. Graphs of T against 8 for various values of k ;  a = 0. 

5. Results 
A second-order determinant was used in the calculation of the critical Taylor 

number T,. The error involved was estimated by the present authors to be less 
than 1 %  (cf. Chandrasekhar 1954). The graphs and table indicate that the 
presence of a very small amount of elasticity in the fluid lowers the critical 
Taylor number by as much as 20 yo, so that the second-order approximation is 
more than adequate to illustrate the dependence of T, on k, over the permissible 
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Elustico-viscous flow between rotuting cylinders 

FIGURE 2. Graphs of T against E for various values of k ;  a = -0.5. 
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FIGURE 3. Graphs of T against E for various values of k ;  a= - 1.0. 
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range of k. Figures 1, 2 and 3 illustrate the dependence of T, on k for various 
values of 01. It is seen that a slight increase in k leads to a spectacular decrease 
in T,. The dependence of T, on k is further illustrated in table 1 and figure 4. 
Also, the values of e associated with the minimum Taylor numbers are greater 
for the elastico-viscous liquids than for the Newtonian liquid (table 1). Thus, 

0 - 1.0 - 1.5 
a 

FIGURE 4. Graphs of To against CI for various values of k .  

(i) k = 0 (ii) k = 0.005 (iii) k = 
& & + 

a Tc % Tc % Tc 
0 1715 3.12 1560 3.22 1427 

- 0.25 1960 3.12 1783 3.22 1631 
- 0.5 2285 3.12 2078 3.22 1902 
- 0.75 2736 3.12 2490 3.22 2279 
- 1.00 3404 3.12 3098 3.22 2840 
- 1.25 4478 3.15 4079 3.25 3754 
- 1.5 6431 3.20 5874 3.31 5467 

TABLE 1. Values of T, and E ,  for various values of k and a. 

0.01 

E C  

3.31 
3.31 
3.31 
3.31 
3-32 
3.35 
3.41 

7 

the cells which arise at  the onset of instability (Taylor 1923) are decreased in 
length by the presence of elasticity in the liquid. 

These results are in agreement with the findings of Thomas & Walters (19634 
in their consideration of the associated problem when the motion is due to a pres- 
sure gradient acting along the channel. 

The authors are grateful to Professor J. G. Oldroyd formany helpfulsuggestions 
made during the preparation of this paper. Their thanks are also due to Dr 
R. M. Wood for assistance in programming the determinantal equation. 
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